

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Association Thermodynamic Parameters (Conductometrically) for Nano Cobalt Sulfate in Mixed EtOH–H₂O Solvents at Different Temperatures

Esam A. Gomaa^{1*}, Mahmoud A.Mousa², Rania R.Zaky¹, Radwa T.Rashad¹

^{1*}Chemistry Department, Faculty of Science, Mansoura University, 35516-Mansoura, Egypt ²Chemistry Department, Faculty of Science, Benha University, Beha, Egypt

Abstracts

The molar conductance for nano cobalt sulfate ($CoSO_4$) in different percentages of ethanol (EtOH) and water were measured at 298.15, 303.15, 308.15 and 313.15K. From the molar conductance for nano $CoSO_4$, the solvation parameters like, activity coefficient, association constant, free energy of association, enthalpy of association and entropy of association were estimated. All these solvation parameters were discussed.

Keywords: Thermodynamics, molar conductance, nano cobalt sulfate, free energy, enthalpy, entropy of association, mixed $EtOH - H_2O$ solvents.

Introduction

Cobalt sulfate hepta hydrate is essential for most higher forms of life, but more than a few milligrams each day is harmful .Rarely have poisoning resulted from cobalt compound .Upon inhalation of salts , there is some evidence for carcinogenicity. Cobalt sulfate is used in storages batteries and electroplating baths, sympathetic inks, and as an additive to soils and animal feeds. For these purposes , cobalt sulfate is produced by treating cobalt oxides with sulfuric acid[1].Our purpose is to try to estimate different concentrations of nano copper sulfate to get rid from body and environment and to view the different thermodynamics for nano cobalt sulfate.

Experimental

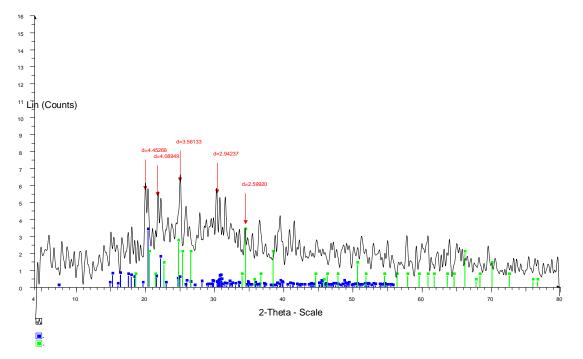
Materials

CoSO₄ from Al Nasr chemicals Co. was used without purification. Ethanol of the type Adwic was used directly without purification, Double-distilled water was used throughout this study.

Preparation of nano CoSO₄

 $CoSO_4$ of the type Adwic was milled by ball - mill. The ball – mill was a retsch MM2000 swing mill with 10 cm³ stainless steel, double – walled tube. Two stainless steel balls of 12 mm diameter and 7 gm weight for each were used. Ball-milling was performed at 20225 Hz for half an hour at room temperature (without circulating liquid and the temperature did not rise above 30°C).

Results and discussion


X-ray diffraction

The X-ray diffraction of nano cobalt sulfate in Fig. (1) shows that it has about 100% of the structure is CoSO₄. The axial ratio of a: b: c is 2.163: 1.000: 1.683. The crystal system is monoclinic, the cell dimensions are : a = 14.04, b = 0.46, c = 10.03. The forms are (0 0 1) (1 1 0). The cleavage is {0 0 1} perfect, {1 1 0} indistinct. P compared to Vedic-CMOS.

ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114

Position	Area	Crystal Size L(nm)	Microstrain	RMS Strain(%)		
19.94101	1.196818	53	0.1	0.1		
20.30598	1.687939	30.9	0.1	0.1		
21.77233	0.9821675	45.6	0.1	0.1		
22.17584	0.7086378	51.6	0.1	0.1		
23.35417	11.22402	3	0.1	0.1		
24.95448	1.506016	40.8	0.1	0.1		
25.83244	1.090416	32.2	0.1	0.1		
27.79621	0.4827081	63.5	0.1	0.1		
29.28784	8.172743	3	0.1	0.1		
30.24901	0.7089157	75.3	0.1	0.1		
30.72258	0.5178185	89.8	0.1	0.1		
31.50839	0.6151297	76.8	0.1	0.1		
32.53265	7.899448	3	0.1 0.1			

Table (1): The crystal size of nano cobalt sulfate.

http://www.ijesrt.com

(C)International Journal of Engineering Sciences & Research Technology [334]

ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114

TEM Images

All images measured by using JEOL HRTEM – JEM 2100 (JAPAN) show that TEM of $CoSO_4$ obtained in ethanol are irregular spheres in the form of cylinders Fig. (2). The diameter in the range of 3 - 89 nm. The small sizes in the range between 3, 40 to 45 nm are collected to give bigger sizes till 89 nm. These different sizes were proved also by x- ray diffraction which gave crystal sizes in the same order .The non homogeneity in sizes for nano cobalt sulfate need controlling during the primary preparation of the samples.

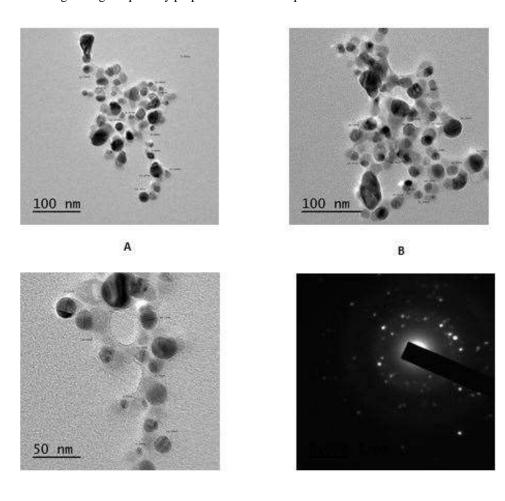


Fig.2(a-d) : TEM for nano cobalt sulfate

D

Conductometric measurements

In 5 ml of the $CoSO_4$ solution $(1.0 \times 10^{-3} \text{ M})$ was placed in the titration cell, thermostatic at the preset temperature and the conductance of the solution was measured after the solution reached thermal equilibrium. Then, a known amount of solvent was added in a stepwise manner using a calibrated micropipette. The conductance of the solution was measured after each addition until the desired constant reading was achieved. The specific conductance values were recorded using conductivity bridge HANNA, H1 8819N with a cell constant equal to 1. The conductometer was conducted with a thermostat of the type the Kottermann 4130 ultra thermostat. The temperature was adjusted at 298.15, 303.15 and 308.15 and 313.15 K.

Association and triple ion association constants:

С

http://www.ijesrt.com

com (C)International Journal of Engineering Sciences & Research Technology [335]

[Gomaa, 3(10): October, 2014]

The molar conductance (Λ_m) values were calculated using equation (1) [2-21]:

$$\Lambda_m = \frac{(K_s - K_{solv})K_{cell} \times 1000}{C} \tag{1}$$

Where K_s and K_{solv} are the specific conductance of the solution and the solvent, respectively; K_{cell} is the cell constant and C is the molar concentration of the CuSO₄ solution.

By drawing the relation between molar conductance ($\Lambda_{0 \text{ m}}$) and $\sqrt{C_m}$, straight lines were obtained from which we extrapolate the line to zero salt concentration to evaluate the limiting equivalent conductance.

The association constant K_A was calculated by using equation (2). The experimental data for conductance measurements were analyzed using Fuoss-Shedlovsky extrapolation techniques which follows equation [22-39]: -

$$\frac{1}{\Lambda_{m} S(Z)} = \frac{1}{\Lambda_{o}} + \left(\frac{K_{A}}{\Lambda_{o}^{2}}\right) \left(C\Lambda_{m} \gamma_{\pm}^{2} S(Z)\right) \qquad \dots \dots \dots (2)$$

Where $S(Z) = 1 + Z + Z^{2}/2 + Z^{3}/8 + \dots etc. \qquad \dots \dots (3)$
And $Z = \frac{S(\Lambda_{m} C)^{1/2}}{\Lambda^{3/2}} \qquad \dots \dots \dots (4)$

The value of (Λ_0) was used to calculate the Onsager slope (S) from the equation:

$S = aA_o$	+ <i>b</i>	(5)
Where	$a = 8.2 \ x \ 10^5 \ /(\epsilon T)^{3/2}$	(6)
b = 82.4	$1/\eta (\varepsilon T)^{1/2}$	(7)

Where (ϵ) is the dielectric constant of the solvent, (η_0) is the viscosity of the solvent and (T) is the temperature. Using the values of (ϵ) and (η_0), the value of (S) were easily estimated. Using the data of (Λ_m), S(z) and (Λ_0), the values of degree of dissociation (α) were calculated by using the following equation:

Using these (lpha) and (ɛ) values, the mean activity coefficients (γ_{\pm}) were evaluated by means of equation

And
$$\log \gamma_{\pm} = -\frac{Z_{\pm}Z_{-}A\sqrt{I}}{I + Br^{\circ}\sqrt{I}} \qquad \dots \dots \dots (9)$$

Where Z., Z_{+} are the charges of ions in solutions A, B are the Debye-Hückel constant.

 $A = 1.824 X 10^{6} (\epsilon T)^{-3/2}$; $B = 50.29 X 10^{8} (\epsilon T)^{-1/2}$

And (r^o) is the solvated radius.

Using the values of association constant (K_A) , the values of the dissociation constant (K_D) were easily calculated by means of the following equation:

 $K_D = 1/K_A$ (10) The values of the triple ion association constant (K₃) were calculated by using the equation (11).

$$\frac{A_{m}C^{1/2}}{(I-\frac{A_{m}}{A_{o}})^{1/2}} = \frac{A_{o}}{(K_{A})^{1/2}} + \frac{\lambda_{3}^{o}C}{(K_{A})^{1/2}} (I-\frac{A_{m}}{A_{o}})^{(1)}$$

Equation (11) was derived by Fuoss and using Walden approximation ($\Lambda_0 = 3 \lambda_0$). The values of (η_0 , Λ_0 , Λ_m , C, S, Z, S(Z), γ_{\pm} , K_A, K_D, α and K₃ for the solutions of 10⁻³ M concentration were calculated and are reported in Tables (1-4) for nano cobalt sulfate in mixed EtOH-H₂O solvents at different temperatures.

http://www.ijesrt.com

(C)International Journal of Engineering Sciences & Research Technology [336]

Thermodynamic Parameters of association Nano Cobalt Sulfate Solutions:

The Gibbs of free energy change of association (Δ G_A) of different concentration of the metal salt solutions in pure MeOH and also in H₂O were calculated [40-53] from the association constant (K_A) by using equation (12) [45-53]

 $\Delta G_A = -2.303 \ RT \log K_A$ (12) Where R is the gas constant and T is the absolute temperature.

The enthalpy change of association (ΔH_A) for the metal salts was calculated for each type from the association constants by using Van't Hoff equation (13) [25-53]: $dlnK \qquad \Delta H_A^0$ (12)

 $\frac{1}{dT} - \frac{1}{RT^2}$ (13) By drawing the relation between log K_A and 1/T giving straight line with slope (- Δ H_A/2.303R) as shown in Fig.(5,6).

The entropies of association (ΔS_A) for the electrolytes were calculated by the use of Gibbs-Helmholtz equation (14).

 $\Delta G_A = \Delta H_A - T\Delta S_A \qquad \dots \dots \dots \dots (14)$ The calculated values of (ΔH_A) and (ΔS_A) for the metal salts are presented in Table (6).

The limiting equivalent conductance (Λ_{o}) increase as the temperature increased and dissociation degree decrease and then increase as the temperature increased indicating higher solvation process.

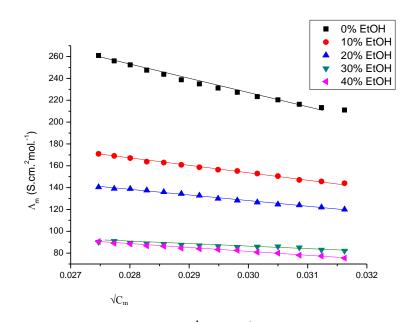


Fig. (3): The relation between molar conductance (Λ_m) and $\sqrt{c_m}$ of nano CoSO₄ in ethanol-H₂O at 298.15 K. Table (2): The values of viscosity (η_o), limiting molar conductance (Λ_o), molar conductance (Λ_m), Walden product ($\Lambda_o \eta_o$), fluidity ratio (R_x), Fuoss-Shedlovsky parameters (S, Z and S(z)), activity coefficient ($\gamma \pm$), association constant (K_A), dissociation constant (K_D), degree of dissociation (α), triple ion association constant (K_3), Gibbs free energy of association (ΔG_A) for nano CoSO₄ in (ETOH-H₂O) at 298.15 K.

http://www.ijesrt.com

ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114

VOL.% OF EtOH			Λm	$\Lambda_o \eta_{_o}$	S	Z	S(z)	γ_{\pm}	KA	10 ³ K _D	α	10 ⁵ K3	ΔG_A
0%	0.8921	566.64	208.3	5.054	190.717	0.0062	1.0063	0.9154	5782.70	0.173	0.3699	16.8	-21.47
10%	0.8977	350.14	147	3.143	142.424	0.0081	1.0081	0.9082	4107.71	0.243	0.4232	13.6	-20.62
20%	0.9042	288.10	123.9	2.605	129.447	0.0090	1.0091	0.9051	3860.86	0.259	0.4339	13	-20.47
30%	0.9118	161.20	84.3	1.978	107.741	0.0118	1.0149	0.8898	3823.668	0.348	0.4438	12.5	-19.61
40%	0.9209	154.79	76.5	1.4254	100.118	0.0134	1.0135	0.8784	3329.732	0.434	0.4606	11.7	-19.47

 Λ_{o} in (S cm².mol⁻¹), Λ_{m} in (S cm².mol⁻¹) and Δ G_A in (kJ mol⁻¹).

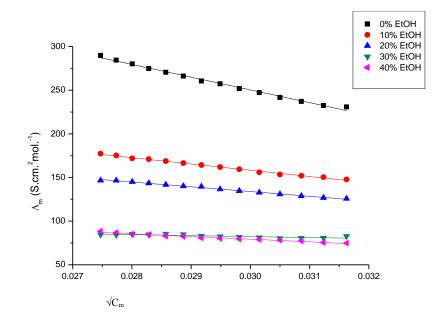


Fig. (4): The relation between molar conductance (Λ_m) and \sqrt{C} of nano CoSO₄ in ethanol-H₂O mixed solvent at 303.15 K. Table (3): The values of viscosity (η_o), limiting molar conductance (Λ_o), molar conductance (Λ_m), Walden product ($\Lambda_o \eta_o$), fluidity ratio (R_x), Fuoss-Shedlovsky parameters (S, Z and S(z)), activity coefficient ($\gamma \pm$), association constant (K_A), dissociation constant (K_D), degree of dissociation (α), triple ion association constant (K_3), Gibbs free energy of association (ΔG_A) for nano CoSO₄ in (ETOH-H₂O) at 303.15 K.

VOL.% OF EtOH			Λm	$egin{array}{c} \Lambda_o \ \eta_o \end{array}$	S	Z	S(z)	γ _±	KA	10 ³ Kd	α	10 ⁵ K3	$\Delta \mathbf{G}_{\mathbf{A}}$
0%	0.800	688.23	237.027	5.506	228.10	0.0059	1.0060	0.9170	0.0068	0.15	0.3464	18.5	-22.25
10%	0.803	374.04	151.977	3.006	156.60	0.0082	1.008	0.9085	0.0045	0.22	0.4097	14.3	-21.19
20%	0.808	306.60	128.877	2.477	142.38	0.009	1.0093	0.9049	0.0041	0.24	0.4242	13.5	-20.97
30%	0.813	154.90	80.577	1.859	106.32	0.0103	1.0114	0.8917	0.0022	0.45	0.52822	11.8	-20.44
40%	0.819	171.79	77.427	1.407	102.90	0.0136	1.0136	0.885	0.0019	0.51	0.5868	8.8	-19.50

http://www.ijesrt.com

(C)International Journal of Engineering Sciences & Research Technology

 Λ_{o} in (S cm².mol⁻¹), Λ_{m} in (S cm².mol⁻¹) and Δ G_A in (kJ mol⁻¹).



Fig. (5): The relation between molar conductance (Λ_m) and \sqrt{C} of nano CoSO₄ in ethanol-H₂O at 308.15 K. Table (4): The values of viscosity (η_o), limiting molar conductance (Λ_o), molar conductance (Λ_m), Walden product ($\Lambda_o \eta_o$), fluidity ratio (R_x), Fuoss-Shedlovsky parameters (S, Z and S(z)), activity coefficient ($\gamma \pm$), association constant (K_A), dissociation constant (K_D), degree of dissociation (α), triple ion association constant (K_3), Gibbs free energy of association (ΔG_A) for nano CoSO₄ in (ETOH-H₂O) at 308.15 K.

VOL.% OF EtOH	$10^2 \eta_o$ (poise)	1 10	Λm	$\Lambda_o \eta_{_o}$	S	Z	S(z)	γ_{\pm}	KA	10 ³ K _D	α	10 ⁵ K ₃	Δ GA
0%	0.7222	736.34	243.556	5.3184	249.71	0.0060	1.0060	0.9173	7538.60	0.133	0.3327	19.6	-22.87
10%	0.7272	395.22	155.358	2.87404	170.68	0.0083	1.0083	0.9085	4898.71	0.204	0.3963	15.1	-21.77
20%	0.7329	332.20	130.158	2.43469	156.99	0.0099	1.0091	0.9069	4749.21	0.202	0.3995	15.4	-21.79
30%	0.7397	196.67	83.958	1.75888	114.95	0.0165	1.0166	0.8886	4043.66	0.289	0.5448	11.23	-19.5
40%	0.7478	179.60	78.708	1.34345	102.45	0.0193	1.0194	0.8654	3693.46	0.370	0.5887	9.43	-19.05

 Λ_{o} in (S cm².mol⁻¹), Λ_{m} in (S cm².mol⁻¹) and Δ G_A in (kJ mol⁻¹).

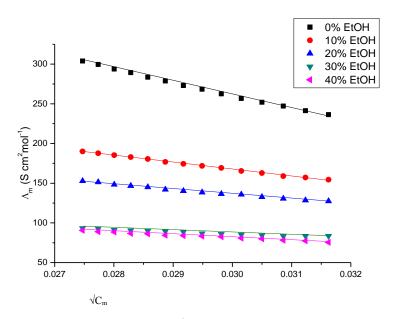
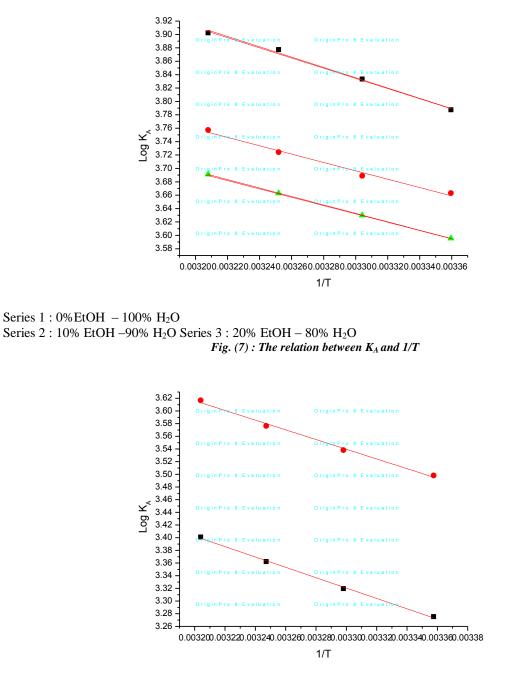



Fig. (6): The relation between molar conductance ($\Lambda_{\rm m}$) and \sqrt{C} of nano CoSO₄ in ethanol-H₂O at 313.15 K Table (5): The values of viscosity (η_o), limiting molar conductance (Λ_o), molar conductance ($\Lambda_{\rm m}$), Walden product ($\Lambda_o \eta_o$), fluidity ratio (R_x), Fuoss-Shedlovsky parameters (S, Z and S(z)), activity coefficient ($\gamma \pm$), association constant (K_A), dissociation constant (K_D), degree of dissociation (α), triple ion association constant (K₃), Gibbs free energy of association (ΔG_A) for nano CoSO₄ in (ETOH-H₂O) at 313.15 K.

VOL.% OF EtOH	$10^2\eta_o$ (poise)	Λo	Λm	$egin{array}{c} \Lambda_o \ \eta_o \end{array}$	S	Z	S(z)	γ_{\pm}	KA	10 ³ K _D	α	10 ⁵ K3	$\Delta \mathbf{G}_{\mathbf{A}}$
0%	0.6527	753.94	247.16	4. 9209	264.94	0.0062	1.0062	0.9165	7716.87	0.13	0.3298	19.8	-23.308
10%	0.6555	432.12	158.95	2.8303	188.55	0.0081	1.0081	0.9109	5802.30	0.172	0.3708	16.8	-22.566
20%	0.6363	334.18	130.609	2.1263	170.79	0.0098	1.0098	0.9055	4987.84	0.2	0.3947	15.2	-22.172
30%	0.661	169.46	83.9535	1.1201	128.19	0.0163	1.0164	0.8916	2647.64	0.378	0.5000	9.98	-20.523
40%	0.682	185.83	78.1	1.2673	132.53	0.1452	1.0143	0.8960	4138.25	0.241	0.4263	13.4	-21.686

 Λ_{o} in (S cm².mol⁻¹), Λ_{m} in (S cm².mol⁻¹) and Δ G_A in (kJ mol⁻¹).

Series 1 : 30% EtOH – 70% H₂O Series 2 : 40% EtOH – 60% H₂O *Fig.* (8) : *The relation between K_A and 1/T* The calculated values of (Δ H_A) and (Δ S_A) for nano CuSO₄ were tabulated in Table (6).

http://www.ijesrt.com

Xs	ΔH_s (kJ/mole)	ΤΔS
0.1894	14.8442	38.153
0.2595	17.4128	39.979
0.3528	12.9616	35.134
0.4831	18.8386	39.362
0.6774	11.1296	32.816

Table (6): Enthalpies and entropies of association for nano cobalt sulfate at 313.15K.

It was observed from the data shown in all tables that K_A decrease with increase of the vol. % of ethanol and decrease also with rise of temperature due to the more association, solvation in ethanol and more solubility at higher temperatures. Dissociation degree (α) increase with increase of ethanol percentages due to more solvation and less association. Triple ion (K_3) association constants are very small that can be neglected. S (Z) factor is almost equal 1

for divalent salts . Walden products ($\Lambda_0 \eta_a$) is not constant but decrease with increase ethanol percentages due to

viscosity effect. All the mentioned parameters are decreased with rise of temperature due to increase of the solvation energies favor more solubility and less association.

Conclusion

This research focused on the study of conductance measurements for nano $CoSO_4$. The stability constants of association were measured by applying the conductometric method at different temperatures. Based on the results, the association constant decrease with increase of EtOH and increase with increasing temperatures indicating increase in association on adding EtOH in solution and decrease by raising temperature due to the increase in the kinetic energy.

References

- 1. David A. Wright and Pamela Welbourn , Cambridge Environmental Chemistry Series 111 , Cambridge University press , Cambridge UK (2002) .
- 2. F.I.El Dossouki, Chemistry Department, Faculty of Science, Mansoura University, Ph.D.thesis (1999).
- 3. M.V. Angelusiu, S.F. Barbuceanu, C. Draghici, G.L. Almajan, Eur. J. Med. Chem. (2010) 2055–2062.
- 4. J.C. Skou, M. Esmann. Biochim. Biophys. Acta (BBA)-Biomembr., 1 (1981), pp. 101–107.
- 5. J.C. Skou, M. Esmann. Biochim. Biophys. Acta (BBA), 727 (1) (1983), pp. 101–107.
- 6. K.M., Tawarah, S.A.Mizyed : A conductance study of the association of alkali cations with 1,13-dibenzo-24-crown-8 in acetonitrile. J. Solution Chem. 18, 387–401 (1989).
- 7. A.J., Smetana, A.I., Popov, J. Chem. Thermodyn. 11, 1145–1149 (1979).
- 8. P., Debye, H.Hückel, Phys. Z. 24, 305 (1923).
- 9. Y. Takeda, , Bull. Chem. Soc. Jpn. 56, 3600–3602 (1983).
- 10. D.P. Zollinger, E., Bulten, A., Christenhuse, A., Bos, ., W.E.Van Der Linden,: in polar solvents. Anal. Chim. Acta. 198, 207–222 (1987).
- 11. Y.Takeda, Bull. Chem. Soc. Jpn., 56, 3600 (1983).
- 12. Dye, J.L., Nicely, V.A.: A general purpose curve fitting program for class and research use. J. Chem. Educ. 48, 443 (1971).
- 13. D.J.G.Ives, (1971), Chemical Thermodynamics, University Chemistry, Macdonald Technical and Scientific, New York.
- 14. Esam A.Gomaa and R.M.Galal, Basic Sciences of Medicine, 1(2), (2012), 1-5.
- 15. Esam A.Gomaa, Physics and Chemistry of Liquids, 50(2012)279-283.
- 16. Esam A.Gomaa, International Journal of Materials and Chemisty, 2(1), (2012)16-18.
- 17. Esam A.Gomaa, American Journal of Environmental Engineering, 2(3), (2012)54-57.
- 18. Esam A.Gomaa . American Journal of Polymer Science, 2(3), (2012),35-38.
- 19. Esam A.Gomaa. Eur. Chem. Bull., 1(2013) 259-261.
- 20. Esam A.Gomaa, Elsayed abou Elleef and E.A.Mahmoud, Eur . Chem. Bull, 2(2013),732-735.
- 21. Esam A Gomaa and Elsayed M.Abou Elleef, American Chemical Science Journal, 3(2013), 489-499.
- 22. Esam A. Gomaa , Elsayed M.Abou Elleef , Science and Technology, 3(2013)118-122.

http://www.ijesrt.com

(C)International Journal of Engineering Sciences & Research Technology

- 23. Esam A Gomaa and M.G.Abdel Razek , International Research Journal of Pure and Applied Chemistry,3(2013)320-329
- 24. Esam A.Gomaa, International Journal of Theoretical and Mathematical Physcics, 3(2013)151-154.
- 25. Esam A.Gomaa and B.A.Al Jahadali, Education., 2(3),(2012)37-40.
- 26. Esam A Gomaa, American Journal of Biochemistry, 2(3), 9 (2012), 25-28.
- 27. Esam A. Gomaa, Food and Public Health, 2(3), (2012) 65-68.
- 28. Esam A.Gomaa, Global Advanced Research Journal of Chemistry and Material Science, 1(2012)35-38.
- 29. J.I. Kim, A. Cecal, H.J. Born, and E.A. Gomaa, Z. Physik Chemic, Neue Folge 110, 209(1978).
- 30. J.I.Kim and E.A.Gomaa, Bull.Soci.Chim.Belg.,90(1981)391.
- 31. E.A.Gomaa, A.A.El-Khouly and M.A.Mousa, Indian Journal of Chemistry, 23((1984)1033.
- 32. E.A.Gomaa, M.A.Mousa and A.A.El-Khouly, Thermochimica Acta, 86 (1985) 351.
- 33. E.A.Gomaa, M.A.Mousa and A.A.El-Khouly, Thermochimica Acta, 89(1985)133.
- 34. A.A.El-Khouly ,E.A.Gomaa and S.E.Salem, Southern Brazilian Journal of Chemistry ,vol.20 (2012)43-50.
- 35. E.A.Gomaa and B.A.M.Al Jahdali, American Journal of Environmental Engineering, 2(2012)6-12.
- 36. S.L. Oswal, J.S. Desai, S.P. Ijardar, and D.M. Jain, J. Mol. Liquids 144, 108 (2009).
- 37. D. Bobicz, W. Grzybkowski, and A. Lwandowski, J. Mol. Liquids 105, 93 (2003).
- 38. Y. Marcus. The Properties of Solvents (iley, London, (1998).
- 39. E.A.Gomaa, M.A.Hamada and R.Galal, Avances en Quimica, 5(2), 117-121(2010).
- 40. Esam A .Gomaa, Analele Uni.din Bucuresti-Chimie, vol. 19 no1 , pag. 45-48(2010).
- 41. Nagah A.El-Shishtawi, Maany A. Hamada and Esam A.Gomaa, Physical Chemistry, 1(1), (2011)14-16.
- 42. E.A.Gomaa and B.A.M.Al Jahdali, American Journal of Condenesed Matter Physics, 2(1), (2012), 16-21.
- 43. Corradini, F. Marcdhetti, A., Tgagli Azucchi, M., Tassi L., and Tosi, G., J. Chem. Soc., Faraday. Trans., 89, 1359, (1993).
- 44. Esam A.Gomaa, Elsayed M.Abou Elleef, Kamal M.Ibrahim, Amr A Ibrahim and Maii S.Mashaly, Resreach and Reviews : Journal of Chemistry, vol.3,3,(2014)15-21.
- 45. Esam A.Gomaa, Elsayed M.Abou Elleef, Ahmed Fekri, Mohamed Khairy and Reham, M.Abou Karn, Resreach and Reviews : Journal of Chemistry, vol.3,3(2014)22-28
- 46. Esam A.Gomaa, Elsayed M.Abou Elleef, Amr A Ibrahimand Amir Abbas, Resreach and Reviews : Journal of Chemistry,vol.3,3(2014)29-37.
- 47. Esam A.Gomaa, Elsayed M.Abou Elleef, Ahmed Fekri, Mohamed Khairy and Reham, M.Abou Karn, Resreach and Reviews : Journal of Pharmacy and pharmaceutical Sciences, vol.3,3(2014)45-54.
- 48. Esam A.Gomaa, Elsayed M.Abou Elleef and E T Helmy, Resreach and Reviews: Journal of Pharmacy and Pharmaceutical Sciences, vol.3,3 (2014) 55-64.
- 49. Esam A.Gomaa, Elsayed M.Abou Elleef, Ahmed Fekri, and Reham, M.Abou Karn, Annalen der chemischen Forschung, 2, 2, (2014)54-67.
- 50. Esam A.Gomaa, Elsayed M.Abou Elleef, Kamal S.Shalaby and Shereen E. Salem, Journal of Environments, 2.4(2014) 44-53.
- 51. Mohamed N.H.Hamed, Esam A.Gomaa and Sameh.G.Sanad, International Journal of Engineering Sciences& Research Technology, 3,9 (2014) 97-105.
- 52. Mohamed N.H.Hamed, Esam A.Gomaa and Sameh.G.Sanad,Indian Journal of Applied Research, 4,10(2014) 193-197.
- 53. Mohamed N.H.Hamed, Esam A.Gomaa and Sameh.G.Sanad, International Journal of Engineering and Innovative Technology (IJEIT),vol.4,2 (2014) 203-207.